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Automatic surveillance system using fish-eye lens camera
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This letter presents an automatic surveillance system using fish-eye lens camera. Our system achieves
wide-area automatic surveillance without a dead angle using only one camera. We propose a new human
detection method to select the most adaptive classifier based on the locations of the human candidates.
Human regions are detected from the fish-eye image effectively and are corrected for perspective versions.
An experiment is performed on indoor video sequences with different illumination and crowded conditions,
with results demonstrating the efficiency of our algorithm.
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Due to large field of view, wide-angle lens are popu-
larly used for various applications, such as surveillance,
robotic navigation, and semi-automatic parking systems.
Because the angle of view of the fish-eye lens used in
our system was up to 185◦, it achieved effective wide-
area surveillance without a dead angle only one camera.
However, it brought an inherent distortion in the image,
and this distorted image must be rectified or restored in
order to recognize and understand the image accurately.
Human detection and tracking is a necessary approach
for automatic surveillance systems. However, in the im-
age taken by our surveillance system, the region where
human enters the surveillance space is distorted and it is
difficult to detect humans using the original method in-
troduced in Refs. [1−9]. To our knowledge, there is still
no reliable pedestrian detection algorithm reported for
fish-eye image. Refernece [10] proposed human detection
method using fish-eye image to detect ellipses from the
subtraction images of fish-eye pictures as human area.
However, in a more crowded situation and when sudden
illumination changes occur, their method shows a clear
increase in false alarm rate.

In order to improve the efficiency of human detection
on fish-eye images even in crowded indoor environments,
we propose a human detection method. The rotations
and sizes of the human regions on the fish-eye image
change based on the locations of humans in the surveil-
lance area. We propose a method to normalize these
regions. Because a fish-eye lens camera is set on top of
the surveillance area, the shapes of humans are changed
based on their locations in the surveillance area. In
this letter, we create three types of classifiers to detect
humans in any part of the surveillance area; the most
adaptive classifier for each human is chosen automati-
cally from several classifiers. Moreover, we propose a
method to minimize the occlusion effects. We infer the
possible occlusion region in each human candidate region
based on its location on the fish-eye image. Once the
occluded regions are detected, the occlusion effects can
be minimized by adjusting the threshold of the classifier.

Unlike other systems such as those proposed in Refs.
[11,12], the human regions in our proposed method are
detected initially from the fish-eye image, and only the

human regions are corrected afterwards. In other sys-
tems, the entire input fish-eye images are corrected
first and then the human regions are detected from
the corrected images. Using our system, the processing
efficiency can be improved and the processing time can
be significantly reduced.

The system is designed as illustrated in Fig. 1, wherein
the fish-eye lens camera is set on top of the surveillance
area. The input image of the fish-eye lens camera is illus-
trated in Fig. 2, with the background image illustrated
in Fig. 2(a) and the input image illustrated in Fig. 2(b).

The edges of the background and input images are
extracted using Sobel operator[13] as illustrated in Figs.
3(a) and (b). In addition, the subtraction image between
the input edge image and the background edge image is
computed, as illustrated in Fig. 3(c). As shown in Fig.
3, all the head edges look like ellipses; thus, an efficient
ellipse detection method[14] is adopted to extract the el-

Fig. 1. Image taken by the proposed surveillance system. (a)
Background image; (b) input image.

Fig. 2. Proposed surveillance system.
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Fig. 3. Examples of edge images. (a) Background edge image;
(b) input edge image; (c) subtraction image.

lipses from the edge image as head candidates. The pro-
posed method is presented as follows.

For each pair of pixels, (x1, y1) and (x2, y2), the follow-
ing five parameters of an ellipse can be calculated:

x0 = (x1 + x2)/2, (1)
y0 = (y1 + y2)/2, (2)

a = [(x2 − x1)2 + (y2 − y1)2]1/2/2, (3)
α = a tan[(y2 − y1)/(x2 − x1)], (4)

b2 = (a2d2 sin2 τ)/(a2 − d2 cos τ), (5)

cos τ = (a2 + d2 − f2)/2ad, (6)

where (x0, y0) is the center of the assumed ellipse, a is the
half-length of the major axis, α is the orientation of the
ellipse, f is the focus of the ellipse, b is the half-length of
the minor axis, and d is the distance between (x, y) and
(x0, y0). A one-dimensional accumulator array is then
used to vote on the half-length of the minor axis; if the
votes reach a threshold, an ellipse is found and we yield
the parameters for the detected ellipse and remove all
pixels on that ellipse from the image.

The results of the extracted head candidates are illus-
trated in Fig. 4. The following process will be executed
for each head candidate.

Based on the location of the head candidate, the
method introduced in Ref. [15] was adopted in this letter
in order to determine the size of the human candidates
in different locations. Considering a cube whose size is
bigger than a normal man standing on the floor in the
real world, the projection of the cube can be considered
as the human candidate region when the coordinate of
the upper cube’s projection is near the head candidate.

As shown in Fig. 1, points P ′
1, P ′

2, and P ′
3 in the fish-

Fig. 4. Results of extracted human head candidates.

eye image are the projections of points P1, P2, and P3

in real word, respectively. The projections of humans A
and B are illustrated in Fig. 5. All the projections of
humans seem to stand on the line la between the center
of the fish-eye image (O) and their head candidate cen-
ter (P ′

2 and P ′
3); the feet of the human (P ′

1) are always
closer to the center of the fish-eye image (O) than the
human’s head (P ′

2). The angles α between the vertical
line and the line from the center of the hand candidates
are computed, and all the human candidate regions are
rotated using(

x′

y′

)
=

(
cos α − sinα
sinα cos α

)(
x
y

)
, (7)

where (x, y) is the coordinate of the original image and
(x′, y′) is the coordinate of the rotated image. The
results of the normalized human candidate regions are
illustrated in Fig. 6.

As shown in Fig. 5, when humans stay at different lo-
cations, their shapes will change, making it impossible to
detect all of them using the same detector. In this letter,
we created three types of classifiers to categorize human
and non human. Selecting the most adaptive classifier is
thus an important issue. The shapes of humans change
based on their distances from the head candidate cen-
ter to the center of the image. We constructed three
classifiers using different training images, with the most
adaptive classifier selected using the following rules: If
di ≤ θ1, classifier 1 is activated; if θ1 ≤ di≤ θ2, classifier
2 is activated; if di≥ θ3, classifier 3 is activated. Here di

is the distance between the center of the fish-eye image
and the head candidate center; θ1, θ2, and θ3 are some
constants related to the threshold values.

We propose a method for selecting the values of
θ1, θ2, and θ3. We consider a cube whose size is bigger
than a normal man standing on the floor in the real world
and whose height is three times longer than its width.

Fig. 5. Projections of humans standing on the floor.

Fig. 6. Results of normalized human candidate regions.
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Assuming that the cube moves from a distance and its
projection is observed, when the height of the rectangle
becomes 1.5 times longer than its width, θ2 equals the
distance between the upper point of the cube’s projec-
tion and the center of the image. In the same way, when
the height of the rectangle becomes equal to its width, θ1

equals the distance between the upper point of the cube’s
projection and the center of the image.

In order to achieve accurate human detection, we adopt
the histograms of oriented gradient (HOG) descriptors
and use 13 cascade AdaBoost classifiers[7,8] to construct
the three classifiers.

Since the human detection approach controls partial
occlusions poorly, its accuracy may decrease in crowded
conditions. Hence, we propose a method to handle oc-
clusion effects.

As shown in Fig. 1, human A is closer to the center
of the surveillance area (O′) than human B in the real
world, thus the projection of human A on the fish-eye
image is also closer to the center of the fish-eye image
(O) than human B. Using the fish-eye image taken by
our system, the location of each human in the real world
can be estimated. In this system, the human candidates
are listed in order of their distances from the center of
the fish-eye image, and human detection will proceed fol-
lowing this sequence.

If a human candidate region is evaluated as a human,
this rectangle area is labeled as human A, as illustrated
in Fig. 5. When a portion of the human candidate re-
gion is occluded by a human who has been previously de-
tected, the occluded area (shown as the striped quadrilat-
eral area in Fig. 5) and the occluded ratio in this region
are computed using

rocl =
Aocl

Aall
, (8)

where Aocl is the occluded area and Aall is the human
candidate area.

The ratio rocl is used to adjust the threshold of the
classifier. In this system, we adjust the number of cas-
cades to minimize the occlusion effects. Increasing the
number of cascades causes the detection of humans to
become more difficult; decreasing the number cascades
makes humans easier to be detected. The number of cas-
cades is adjusted based on rocl using the following rules:
if rocl < 0.3, the number of cascades is adjusted to 11; if
0.3 ≤ rocl < 0.5, the number of cascades is adjusted to
9; if rocl > 0.5, the human is considered to be the same
person as the human in the front.

Fish-eye imaging system brings an inherent distortion
in the image. Therefore, it is necessary to correct the
human region to make it easier to understand. In our
proposed system, we adopt the method introduced in
Refs. [16,17] to correct the detected human region. The
object plane shown in Fig. 7 is a typical region of inter-
est; we aim to determine its mapping relationship onto
the image plane to properly correct the perspective of the
object. The image plane corresponds to the input fish-
eye images. The direction-of-view vector, DOV(x,y,z),
determines the zenith and azimuth angles for mapping
the object plane onto the image plane, XY. The ob-
ject plane is defined to be perpendicular to the vector−−−→
DOV(x,y,z).

Fig. 7. Coordinate reference frame representation.

We define

xv = l′ tan

(
π

2
− tan−1

√
R2 − (x2 + y2)√

x2 + y2

)
cos(tan−1 y

x
),

(9)

yv = l′ tan

(
π

2
− tan−1

√
R2 − (x2 + y2)√

x2 + y2

)
sin(tan−1 y

x
),

(10)

where l′ is the distance from the object plane to the
image plane (see Fig. 7), and R is the radius of the
fish-eye camera. Equations (9) and (10) provide a direct
mapping from the XY image space to the XvYv space,
providing the fundamental mathematical foundation for
the omni-directional viewing system. By determining
the desired zenith, azimuth, and object plane rotation
angles and magnification, the locations of x and y in the
input image can be established. Using Eqs. (3) and (4),
the points in the object plane can then be computed,
and the corrected human regions are achieved.

We collected images for training and video sequences
of scenes for testing. The training data consisted of 2000
positive images and 2000 negative images for each clas-
sifier, whereas the test data consisted of 800 positive
images and 800 negative images. The training data, as
well as the test data, were captured on different places,
and involved different people. All the test images were
indoor scenes. The following conditions hold true: the
maximum number of pedestrians in each scene is 10; 98
people are captured on the crowded conditions; the num-
ber of each scene is over 6; 110 people are captured when
sudden illumination changes occur; 48 people are cap-
tured with the large cart. We compared five experiments
to demonstrate the efficiency of our proposed method.

All the training data used for constructing classifier
1 follow this rule: the distances between the head can-
didate center of people and the center of the image are
less than θ1. Figure 8 shows the examples of detection
results using only classifier 1; the rectangle shows the
detected human region.

All the training data used for constructing classifier 2
follow this rule: the distances between the head candi-
date center of people and the center of the image are di,
θ1 ≤ di ≤ θ2. Figure 9 shows the examples of detection
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Fig. 8. Examples of human detection results using classifier 1.

Fig. 9. Examples of human detection results using classifier 2.

Fig. 10. Examples of human detection results using classifier
3.

results using only classifier 2; the rectangle shows the
detected human region.

All the training data used for constructing classifier
3 follow this rule: the distances between the head can-
didate center of people and the center of the image are
larger than θ2. Figure 10 shows the examples of detec-
tion results using only classifier 3; the rectangles shows
the detected human region.

The training data used for constructing the overall
classifier include all the training data used for construct-
ing classifiers 1, 2, and 3. The training data consisted of

Fig. 11. Examples of human detection results using the over-
all classifier.

Fig. 12. Examples of human detection results using the over-
all classifier (human with a large cart).

Fig. 13. Examples of human detection results using the over-
all classifier (wherein sudden illumination changes occur).

Fig. 14. Examples of human detection results using the ellipse
detection method.

6000 positive images and 6000 negative images. Figures
11−13 show the examples of detection results using the
overall classifier; the rectangles are the detected human
regions. As shown in the figures, too many false alarms
appear using the overall classifier.

In Ref. [10], the authors proposed a method to detect
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Fig. 15. Examples of human detection results using the pro-
posed method.

Fig. 16. Examples of human detection results using the pro-
posed method (human with a large cart).

Fig. 17. Examples of human detection results using the pro-
posed method (wherein sudden illumination changes occur).

Fig. 18. Human detection results.

ellipse regions as human regions. The experiment for
comparison was carried out using the same testing im-
ages that were used in our proposed system. Experimen-
tal results show that the performance of their method
is very poor when sudden illumination changes occur.
Figure 14 shows the examples of detection results using
the ellipse detection method.

As shown in Figs. 15−17, the proposed method may
successfully detect humans in fish-eye images. The ex-

perimental results show that the performance of the
proposed method is better than any other methods.

A receiver operating characteristic (ROC) curve, which
plots the detection rate versus the false positive rate,
shows the experimental results (Fig. 18). With a false
negative rate of 10%, our method has a false positive rate
that is 9.75% lower than the system using only classifier
1 for classification, 5.25% lower than the system using
only classifier 2, 4.5% lower than the system using only
classifier 3, 4% lower than the system using the overall
classifier, and 11.25% lower than the system that finds
ellipses as humans. These results indicate that our pro-
posed method has better accuracy compared with other
methods.

In conclusion, we present an automatic surveillance
system using fish-eye lens camera. We propose a hu-
man detection method using fish-eye lens camera, which
achieves wide-area automatic surveillance without a dead
angle using only one camera. The experimental results
demonstrate the efficiency of our algorithm.
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